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Abstract. The water cycle in Czechia has been observed to be changing in recent years, with precipitation and evapotranspi-

ration rates exhibiting a trend of acceleration. However, the spatial patterns of such changes remain poorly understood due to

the heterogeneous network of ground observations. This study relied on multiple state-of-the-art reanalyses and hydrological

modeling. Herein we propose a novel method for benchmarking hydroclimatic data fusion based on water cycle budget clo-

sure. We ranked water cycle budget closure of 96 different combinations for precipitation, evapotranspiration, and runoff using5

CRU TS v4.06, E-OBS, ERA5-Land, mHM, NCEP/NCAR R1, PREC/L, and TerraClimate. Then we used the best-ranked

data to describe changes in the water cycle in Czechia over the last 60 years. We determined that Czechia is undergoing water

cycle acceleration, evinced by increased atmospheric water fluxes. However, the increase in annual total precipitation is not as

pronounced nor consistent as evapotranspiration, resulting in an overall decrease in the runoff. Furthermore, non-parametric

bootstrapping revealed that only evapotranspiration changes are statistically significant at the annual scale. At higher frequen-10

cies, we identified significant spatial heterogeneity when assessing the water cycle budget at a seasonal scale. Interestingly,

the most significant temporal changes in Czechia take place during spring, while median spatial patterns stem from summer

changes in the water cycle.

1 Introduction

During the last decades, there have been significant advances in analyzing the water cycle and its response to global warming.15

While we expect alterations in the water cycle to respond to climate change and global warming, the actual extent and char-

acteristics of this reaction are poorly understood (Zaitchik et al., 2023). On the one hand, small changes in total precipitation

suggest a shift in precipitation towards more intense and less frequent events (Trenberth, 2011). On the other hand, it was

hypothesized that an increased vertical gradient of atmospheric water vapor would offset atmospheric wind convergence in the

tropics making wet regions wetter and dry regions drier (Held and Soden, 2006). Nevertheless, such claims lack conclusive20
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support of observed measurements and have lit the fire of controversy in the field (Vecchi et al., 2006; Allan, 2012; Skliris

et al., 2016).

Undoubtedly, the advances in remote sensing observations and process-based modeling have shaped current research the

most. However, as the data sources increased, it soon became apparent that large discrepancies between the data sets still

exist due to biases and uncertainties (Vargas Godoy et al., 2021). Observational data is hampered by short and heterogeneous25

ground-based records (Schneider et al., 2017), and unquantified uncertainties on satellite-based products (Sheffield et al.,

2009). Therefore, reanalysis data providing global coverage through models while assimilating observation-based data has

attained an essential role in assessing water cycle changes (Lorenz and Kunstmann, 2012). Each data source has limitations and

uncertainties; when multiple sources are combined, these can compound and result in conflicting or unclear results. Hence, in

addition to uncertainty due to the complex water cycle system, which involves multiple feedback mechanisms and interactions30

between different components, we must account for data merge uncertainty. Accordingly, various methodologies for multi-

source data integration have emerged. Among the most widely used ones are: Bayesian model averaging, constrained linear

regression, neural networks, optimal interpolation, and simple weighting (Rodgers, 2000; Aires, 2014; Moazamnia et al., 2019;

Pellet et al., 2019; Xiao et al., 2020). Subsequently, once merged data is generated, it is subject to post-processing for water

cycle budget closure via Monte Carlo applications and Kalman filter variations (Pan and Wood, 2006).35

Several studies have quantified the water cycle by implementing data integration methods and budget closure constraints,

e.g.,: Sahoo et al. (2011) integrated 16 data sets over 10 globally distributed river basins (eight for precipitation, six for evap-

otranspiration, one for runoff, and one for total water storage); Pan et al. (2012) integrated eight data sets over 32 globally

distributed river basins (four for precipitation, two for evapotranspiration, one for runoff, and one for total water storage);

Rodell et al. (2015), integrated six data sets over continents and ocean basins (one for precipitation, three for evapotranspira-40

tion, one for runoff, and one for total water storage); Zhang et al. (2016), integrated 14 data sets globally (five for precipitation,

six for evapotranspiration, one for runoff, and two for total water storage); Munier and Aires (2018) integrated 12 data sets at

the global scale (four for precipitation, three for evapotranspiration, one for runoff, and four for total water storage).

The studies mentioned above focus on merging multiple data sets to end up with a single data set per water cycle component

at different spatial scales. It is evident that unconstrained uncertainty remains despite the plethora of data products derived45

from satellites, ground-based measurements, and climate models. This is true even for localized studies at regional scales

where “ground-truth” measurements for one or more components of the water cycle are available. One region of particular

interest is Czechia, a small country in Central Europe with diverse landscapes and a growing population (United Nations,

2022). The water cycle over Czechia has been experiencing significant changes in recent times, affecting various aspects of

the water balance in the region, including changes in river flow regimes and water quality, loss of wetlands, and changes in50

the frequency and severity of extreme events (Mozny et al., 2020). Besides, changes in the rainfall-snowfall partition have

given rise to a decrease in snow cover and premature snowmelt (Nedelcev and Jenicek, 2021). These changes in the water

cycle are expected to continue in the near-future (Kyselý and Beranová, 2009; Jenicek et al., 2021). Precipitation, in particular,

is expected to increase its mean mainly in winter and extreme rates throughout the year (Kyselý et al., 2011). In addition,

increased human activities, such as urbanization and agriculture, have led to changes in land use and land cover, which in turn55
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has contributed to the occurrence of floods and droughts (Svoboda et al., 2016). Droughts, have had disastrous consequences

for agriculture, forestry, water management, and other human activities (Brázdil et al., 2009). Consequently, the water cycle in

Czechia and human activity find themselves on a causal feedback loop.

In this study, we aim to estimate the water cycle changes over Czechia between the 1961-1990 and 1991-2020 periods,

and determine the current trends and patterns in water cycle components. Our analysis includes various data sets at different60

spatiotemporal scales allowing us to assess 96 data combinations for budget closure. Rather than enforcing budget closure on a

multi-source integrated data set or assessing different integration methods, we explored an empirical method to rank how mul-

tiple data set combinations close the water cycle budget while correlating to referential data estimates of individual water cycle

components. In this manner, we are not generating yet another new data set but are identifying the best combination among the

data sets available for our study domain. Only the data sets with the best rankings as determined by our proposed benchmarking65

were used in all subsequent computations. We found that hydroclimatic models, as expected, have better water budget closure.

However, ERA5-Land is not far off despite known non-closure limitations associated with reanalyses. We identified an overall

acceleration of atmospheric water fluxes. Simultaneously, we report a heterogeneous distribution of freshwater availability.

2 Data and Methods

2.1 Study Area70

Czechia is a landlocked (surrounded by Germany, Austria, Slovakia, and Poland) European country that covers an area of

78 864 km2. Czechia is an essential headwaters region of the European continent; in hydrological terms, it can be called the

roof of Europe. The country is home to several large rivers, including the Vltava, the Elbe, the Morava, and the Oder, all of

which have their sources within it. Czechia is situated at the intersection of three sea drainage basins: the North Sea, the Baltic

Sea, and the Black Sea, which, in return, divide Czechia into three main hydrological catchment areas: the Elbe, Oder, and75

Danube basins (Figure 1). All of these major watercourses drain water into neighboring states. The water sources of Czechia

are thus almost exclusively dependent on precipitation.

2.2 Data

To assess water cycle acceleration we gathered data sets with at least 60 years of record. This first filter reduced the plethora

of publicly available data sets to nine data sets from multiple sources (observation-based, reanalysis, and hydrological model80

products) plus three evaluation references (Table 1). The evaluation data sets for precipitation, evapotranspiration, and runoff

are the Czech Hydrometeorological Institute (CHMI), Global Land Evaporation Amsterdam Model (GLEAM v3.6a; Martens

et al. (2017)), and GRUN (Ghiggi et al., 2019), respectively. Six precipitation data sets: Climatic Research Unit at the Univer-

sity of East Anglia (CRU TS v4.06; Harris et al. (2020)), European Centre for Medium-Range Weather Forecasts (ECMWF)

Reanalysis (ERA5-Land; Muñoz-Sabater et al. (2021)), the E-OBS data set from the Copernicus Climate Change Service85

(Cornes et al., 2018), National Centers for Environmental Prediction & the National Center for Atmospheric Research Re-
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Figure 1. The three drainage basins within Czechia’s boundaries. Elbe (light gray shade), Danube (dark gray shade), and Oder (no shade).

analysis One (NCEP/NCAR R1; Kalnay et al. (1996)), Precipitation Reconstruction Over Land (PREC/L; Chen et al. (2002)),

and TerraClimate (Abatzoglou et al., 2018). Note that, E-OBS (hereinafter mHM(E-OBS)) was used as meteorologic input for

the mesoscale Hydrologic Model (mHM; Samaniego et al. (2010); Kumar et al. (2013)). Four evapotranspiration data sets:

ERA5-Land, mHM, NCEP/NCAR R1, and TerraClimate. Four runoff data sets: ERA5-Land, mHM, NCEP/NCAR R1, and90

TerraClimate. Using the above listed data sets we assessed a total of 96 different combinations.

Table 1. Data set description. P is precipitation, E is evapotranspiration, and Q is runoff.

Name Variable(s) Spatial Resolution Temporal Resolution Record Length Reference

CHMI P Point Daily 1961-2020 http://portal.chmi.cz

CRU TS v4.06 P 1◦ Monthly 1901-2020 Harris et al. (2020)

E-OBS P 0.125◦ Daily 1950-2020 Cornes et al. (2018)

ERA5-Land P , E, Q 0.1◦ Monthly 1950-2020 Muñoz-Sabater et al. (2021)

GLEAM v3.6a E 0.25◦ Daily 1980-2020 Martens et al. (2017)

GRUN Q 0.5◦ Monthly 1902-2014 Ghiggi et al. (2019)

mHM E, Q 0.125◦ Daily 1950-2020 Samaniego et al. (2010)

NCEP/NCAR R1 P , E, Q T62 Monthly 1948-2020 Kalnay et al. (1996)

PREC/L P 0.5◦ Monthly 1948-2020 Chen et al. (2002)

TerraClimate P , E, Q 4 km Monthly 1958-2020 Abatzoglou et al. (2018)
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2.2.1 Evaluation References

The Czech Hydrometeorological Institute (CHMI) provides station derived precipitation data. The CHMI station network

consists of approximately 700 stations distributed with a mean density of one station per each 100 km2, adequately representing

the distinct geographical features of Czechia (Kašpar et al., 2021). Although the data collection and related services for a95

specific station are generally managed by the regional branches of CHMI, the entire territory station data can be accessed from

the Department of Climatology of CHMI at once. All the data sets are undergone robust quality control checks by CHMI before

being added to the database. Herein, we gathered the country level estimates calculated by CHMI (one value per month) for a

period of 60 years (1961-2020).

The Global Land Evaporation Amsterdam Model (GLEAM) is a satellite-based global evaporative model designed to es-100

timate terrestrial evapotranspiration from 1980 to the near present (Martens et al., 2017). It encompasses a set of algorithms

that estimates a total of 11 variables, including actual and potential evapotranspiration rates. Briefly, the estimation procedure

consists of two major steps. First, given the temperature and radiation data sets, potential evapotranspiration rates in [mm/day]

are estimated by land cover type using the Priestley and Taylor equation (Priestley and Taylor, 1972). Second, potential evap-

otranspiration is converted into actual evapotranspiration based on an evaporative stress factor. Despite GLEAM not being a105

ground station derived product, or even a fully observation-based data set, previous studies have extensively evaluated GLEAM

and advocate for its high quality (Yang et al., 2017; Bai and Liu, 2018; Liu et al., 2021).

GRUN is a gridded global monthly runoff reconstruction generated by a machine learning model (Ghiggi et al., 2019). It is

available at a 0.5◦ spatial resolution and monthly time step from 1902 to 2014. Conceptually, the machine learning algorithm

was trained with observations of monthly temperature, precipitation and streamflow. Then, the trained model is used to predict110

monthly runoff at ungauged catchments. Although the method does not implement any physically detailed hydrological model,

the predicted runoff showed better results than the ensemble mean of 13 global hydrological model simulations when compared

to observational references. Furthermore, GRUN has been extensively applied in regions with sparse in-situ measurements (Hu

et al., 2021; Xiong et al., 2022; Xu et al., 2022; Mei et al., 2023).

2.2.2 Observational-based Products115

CRU TS is a popularly used gridded data set generated by the University of East Anglia’s Climate Research Unit (Harris

et al., 2020). It is known for its historical long-term coverage, which is available from 1901 to the near present. The data set

comes with a 0.5◦ spatial resolution at the monthly scale. It compiles station data from multiple sources such as the Food and

Agricultural Organisation (FAO), the World Meteorological Organisation (WMO), and the National Meteorological Agencies

(NMA’s) (Sun et al., 2018). CRU TS v4, its latest version, implemented angular distance based interpolation to facilitate tracing120

back the stations upon which the gridded data set has been constructed.

PREC/L, created by the US Climate Prediction Center (CPC), is a gridded product entirely based on the station data set

(Chen et al., 2002) with global coverage and monthly time step. PREC/L draws data from over 17 000 stations from the

Global Historical Climatology Network version2 (GHCN v2; Peterson and Vose, 1997) and the Climate Anomaly Monitoring
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System (CAMS; Janowiak and Xie, 1999). Subsequently, the data is interpolated to construct the gridded product at three125

different resolutions (0.5◦, 1◦, and 2.5◦). Herein, we used the 0.5◦ monthly precipitation, whose record extends from 1948 to

the present.

2.2.3 Hydrological Models

The mesoscale Hydrologic Model (mHM; Samaniego et al., 2010; Kumar et al., 2013) is a conceptual grid-based model rep-

resenting dominant hydrological fluxes and storage at the Earth’s surface and subsurface through a set of ordinary differential130

equations. mHM represents processes such as interception, snow, soil moisture, evapotranspiration, and various runoff com-

ponents like fast/slow interflow and baseflow. The model was established, parameterized and evaluated over the European

continent (Rakovec et al., 2016b; Samaniego et al., 2019; Rakovec et al., 2022). The meteorological inputs were based on daily

E-OBS data (Cornes et al., 2018) of precipitation in addition to minimum, maximum and average temperature. The potential

evapotranspiration was derived using the method of (Hargreaves and Samani, 1982). The spatial resolution of the model grid135

corresponds to 0.125◦.

Terraclimate is a high-resolution gridded global climate data set that provides the mean climate and mean water balance data

covering a time span of 1958 to the present (Abatzoglou et al., 2018). The data set is commonly known for its high spatial

resolution (4 km). It uses various global gridded climate data sets such as WorldClim v2 (Fick and Hijmans, 2017) and v1.4

(Hijmans et al., 2005), CRU TS v4 (Harris et al., 2020), Japanese 55-year Reanalysis (JRA55) (Kobayashi et al., 2015), and140

Root zone storage capacity (Wang-Erlandsson et al., 2016) in order to generate the high-resolution monthly climate variables

time series at the global level. An additional advantage of the Terraclimate is that it produces monthly surface water balance

based on a water balance model along with primary climatic variables such as temperature, precipitation, solar radiation, etc.

2.2.4 Reanalyses

ERA5-Land is the latest fifth-generation global atmospheric reanalysis product developed by the European Center for Medium-145

Range Weather Forecast (ECMWF) (Muñoz-Sabater et al., 2021). ERA5-Land, as the name implies, builds upon the terrestrial

component of ERA5 and downscales the model spatial grid resolution from 31 km into 9 km. As a result, ERA5-Land delivers

either hourly or monthly estimates with a spatial resolution of 0.1◦. Given its high spatiotemporal resolution and long record,

ERA5-Land provides valuable data for comprehensive analysis and diverse hydrological applications at the global scale.

The NCEP/NCAR Reanalysis project one is produced by the collaboration between the National Centers for Environmental150

Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) (Kalnay et al., 1996). It is the longest-running

reanalysis that uses rawindsonde data, at the expense that the model and data assimilation scheme are antiquated Trenberth

et al. (2011). The data set is distributed on a T62 Gaussian grid (approximately 1.875◦ at the equator) and its record start dates

back to 1948.
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2.3 Data Evaluation155

We validated the gathered data sets to capture the temporal variability of water cycle components as described by the three

observational references via:

– The coefficient of determination (R-squared or R2)

R2 = 1−
∑n

i (yi− ŷi)
2

∑n
i (yi− y)2

where i starts on the first year of the available record, n is the last year of the available record, yi is the observational

reference on year i, ŷi is the data set estimate on year i, and y is the mean observational estimate for the full available

record.160

– Root Mean Square Error (RMSE)

RMSE =

√∑n
i (yi− ŷi)

2

N

where i starts on the first year of the available record, n is the last year of the available record, yi is the observational

reference on year i, ŷi is the data set estimate on year i, and N is the total number of years in the full available record.

All data sets were spatial weighted averaged over Czechia and temporally aggregated to an annual scale over the calendar

year. Note that only precipitation data sets could be evaluated over the entire 60-year period of 1961-2020. In contrast, evapo-

transpiration was evaluated over 1980-2020 and runoff over 1961-2014. In order to compare a 30-year mean among all water165

cycle components, the common period of 1981-2010 was selected.

2.4 Data Set Ranking

A success metric widely used among several studies is getting the budget closure residual (R) as close to zero as possible.

Herein, we define the budget closure residual as follows:

R = P −E−Q (1)170

where P is precipitation, E is evapotranspiration, and Q is runoff. Thus, we have 96 distributions of 60 annual values each.

The ranking of a given data set combination was determined via:

Ranking =
|Ri|σRi

(cor(Pi−Ei,Qi)cor(Pi,Po)cor(Ei,Eo)cor(Qi,Qo))
2 (2)

where |Ri| is the absolute value of the mean of the 60 annual residuals for the i-th combination, σRi
is the standard deviation

of the 60 annual residuals for the i-th combination, cor(Pi−Ei,Qi) is the correlation between P−E and Q for the i-th combi-

nation, cor(Pi,Po) is the correlation between P of the i-th combination and the precipitation evaluation reference, cor(Ei,Eo)

is the correlation between E of the i-th combination and the evapotranspiration evaluation reference, and cor(Qi,Qo) is the
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correlation between Q of the i-th combination and the runoff evaluation reference. The ranking method proposed herein can

easily be applied to any other referential data set for evaluation. In data-limited areas or those with a poor observational net-

work, the ranking method may still be applied using external data as an evaluation reference, or the corresponding term in the

equation can be simply left out. E.g., if evapotranspiration data for evaluation is not available, Equation 2 becomes:

Ranking =
|Ri|σRi

(cor(Pi−Ei,Qi)cor(Pi,Po)cor(Qi,Qo))
2

In the case of Czechia, we used GLEAM v3.6a as the evaluation reference, due to the absence of access to observational

evapotranspiration.175

2.5 Water Cycle Changes

We assessed the empirical distribution of spatial weighted average values (accounting for the area of each grid cell in proportion

to the total area being averaged) of annual water cycle fluxes between 1961-1990 and 1991-2020 for three of the best data set

combinations. To account for the influence of extreme value in the latter period due to the 100-year drought of 2003 (Brázdil

et al., 2013), we compared the median values rather than their means. To deepen our assessment of changes in the distribution180

of water cycle fluxes, we compared their monthly values between 1961-1990 and 1991-2020. To determine the statistical

significance of the above-mentioned changes, we employed non-parametric bootstrapping of 10 000 iterations. Subsequently,

we performed an analogous analysis in space. We computed the change in the median values between 1961-1990 and 1991-

2020 over each grid cell. Note that each data set was assessed at its native resolution for this part of the analysis. Finally, we

examined the change patterns of water cycles through the seasons. Herein, we considered: winter as December, January, and185

February; spring as March, April, and May; summer as June, July, and August; autumn as September, October, and November.

3 Results

3.1 Benchmarking water cycle components

Our analysis describes the most recent spatiotemporal changes on the water cycle in Czechia. For starters, we examined pre-

cipitation, evapotranspiration, and runoff estimates from the gathered data sets compared to CHMI (Figure 2a), GLEAM v3.6a190

(Figure 2b), and GRUN v1 (Figure 2c) as the respective evaluation references. The variability of estimates from precipitaion

and runoff data sets (Figure 2a and c) visibly have a broader spread than those of evapotranspiration (Figure 2b). While one may

suspect the spread in precipitation is due to the higher number of data sets available, they correlate better to their evaluation

reference than evapotranspiration or runoff. The data set with the highest correlation values for precipitation is mHM(E-OBS)

with R-squared of approximately 0.99 (Figure 2a). mHM has the highest correlation for runoff, with R-squared circa 0.86 (Fig-195

ure 2c), falling to the second highest for evapotranspiration (R-squared 0.7; Figure 2c). Interestingly, the values for the 30-year

average in mHM underestimates runoff (Figure 2c) but overestimates evapotranspiration (Figure 2b). In contrast, NCEP/NCAR

R1 consistently reports the lowest correlation values regardless of the water flux of interest. Additionally, other than for runoff,
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it has considerably higher RMSE values than the rest of the data sets. To some degree, ERA5-Land is the in-betweener data

set because it has high correlation values and simultaneously has high RMSE for precipitation and evapotranspiration, yet for200

runoff, ERA5-Land exhibits moderate correlation and small RMSE.

It would be sensible to use the best data set for each water flux to proceed with further analysis. However, we first verified

if the best data sets individually would depict the best water cycle budget in conjunction. Conventional metrics like R-squared

and RMSE cannot be directly applied to a combination of data sets. We defined an empirical ranking metric, as described by

Equation 2, where the smallest the value, the better the data set combination. While our ranking approach is empirical and205

simple, Equation 2 correctly identifies narrow distribution centered mean zero with higher ranked positions compared to wider

distributions centered around positive or negative values (Figure 3). Upon ranking all 96 possible combinations (Table 2), we

observe that even though mHM outperformed TerraClimate for individual water flux estimates, the TerraClimate exclusive

combination offers the best water budget closure. We expected combinations with hydrological model data to be highly ranked

and reanalyses to be poorly ranked due to the above-reported considerable biases of the latter. Notwithstanding, we were210

surprised to see the ERA5-Land exclusive combination (i.e., all flux estimates from the same data set) among the top five ranks.

The first combination that includes at least one estimate from NCEP/NCAR R1 is at the 45th rank, and the NCEP/NCAR R1

exclusive combination is at the 90th rank.

3.2 Temporal changes in the water cycle

Moving forward, we computed the change in water fluxes’ annual distribution via shifts on their 30-year median (Figure 4).215

Also, we assessed the statistical significance of the observed change in the medians by non-parametric bootstrapping (10 000

iterations). Hereupon, we will report results only for the first- (TerraClimate exclusive), second- (mHM exclusive), and fifth-

ranked (ERA5-Land exclusive) data combinations. Because the third- (CRU TS v4.06, TerraClimate, Terraclimate) and fourth-

ranked (mHM, mHM, TerraClimate) data combinations have a single data set different from the first- and second-ranked ones,

as such, we would be showing the same plots and statistics multiple times. TerraClimate and mHM show similar increases in220

precipitation and evapotranspiration circa 20 mm, but only evapotranspiration manifests a statistically significant change (p

< 0.01). Evapotranspiration changes underwhelming those of precipitation stand further accentuated in ERA5-Land, whose

magnitude of the change in evapotranspiration is almost 60 mm and in precipitation is less than -1 mm. Another peculiarity of

ERA5-Land is that runoff, with a change of -56 mm at p = 0.01 statistical significance. Regarding the estimates for precipitation

minus evapotranspiration, we observe three different behaviors: TerraClimate has a change in P-E in the opposite direction of225

runoff (1 mm vs. -5 mm); mHM has a change in P-E of smaller magnitude than runoff (-2 mm vs. -9 mm); ERA5-Land has

similar changes for both P-E and runoff (-55 mm vs. -56 mm), but with values one order of magnitude higher than those of

TerraClimate and mHM.

The above results, seemingly disagreeing with the expected increases reported in previous literature (Kyselý and Beranová,

2009; Svoboda et al., 2016; Kašpárek and Kožín, 2022), indicate that there have not been any statistically significant changes230

in median annual precipitation over Czechia between the last two 30-year periods. Thereafter, we proceeded to look into

changes between 1961-1990 and 1991-2020 monthly water fluxes (Figure 5). Note that hereinafter we mention only months
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Figure 2. Benchmarking spatial weighted average annual water fluxes over Czechia between 1961 and 2020. For consistency and compa-

rability between different water fluxes, annual anomalies were computed using the 1981-2010 average as a reference, the common period

among all data sets. The 1981-2010 average and standard deviation are listed at the bottom left of each panel. Linear correlation summary
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in white. (a) Precipitation evaluation. CHMI data is shown in blue. (b) Evapotranspiration evaluation. GLEAM v3.6a is shown in green. (c)

Runoff evaluation. GRUN v1 data is shown in purple.
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Figure 3. Empirical distribution of all possible 96 data set combinations colored based on their ranking as determined by Equation 2. The

color gradient goes from higher ranked combinations colored in shades green to lower ranked combinations colored in shades of brown.

with statistically significant changes (p < 0.01). Regarding precipitation, we observe a consistent increase of around 14 mm

during October and circa 11 mm during July present in TerraClimate, mHM(E-OBS), and ERA5-Land. Besides, mHM(E-OBS)

and ERA5-Land had decreasing changes in April of -6 mm and -9 mm, respectively. We also found a -5 mm decrease during235

November, present only in mHM(E-OBS). In terms of evapotranspiration, as expected from the statistically significant changes

described for annual values, we report increases between 1-10 mm depending on the month. TerraClimate has the shortest

period of continuous changes with gradually increasing magnitude from January (1 mm) to March(9 mm). mHM on top of

said evapotranspiration behavior from January (1 mm) to April (4 mm) also shows the subsequent oscillating behavior: May

(2 mm), June (2 mm), July(4 mm), and August (3 mm). ERA5-Land changes in evapotranspiration have a behavior similar to240

mHM but with overall higher magnitudes and two months longer. I.e., a consecutive increase from December (1 mm) to April

(8 mm) and subsequent swings back and forth: May (7 mm), June (7 mm), July(10 mm), August (8 mm), and September (3

mm). Concerning runoff, there is a striking unique visual for TerraClimate, whose range of values from February to Abril is

considerably larger than those of mHM or ERA5-Land. A runoff decrease is present in all data sets for April and May, with an

added magnitude of -18 mm, -8 mm, and -12 mm for TerraClimate, mHM, and ERA5-Land, respectively. Interestingly, these245

runoff decreases are translated only into mHM and ERA5-Land through precipitation minus evapotranspiration decrease in

April (-6 mm and -15 mm).
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Figure 4. Histograms of spatial weighted average annual water fluxes over Czechia, where P is precipitation, E is evapotranspiration, Q is

runoff, and P −E is precipitation minus evapotranspiration. Data are divided into two 30-year periods: 1961-1990 (light gray) and 1991-

2020 (dark gray). The median value of each 30-year period is represented by dashed lines in their respective color. Top row: TerraClimate

(P ), TerraClimate (E), and TerraClimate (Q). Middle row: mHM(E-OBS) (P ), mHM (E), and mHM (Q). Bottom row: ERA5-Land (P ),

ERA5-Land (E), and ERA5-Land (Q).
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Figure 5. Box plot of spatial weighted average monthly water fluxes over Czechia, where P is precipitation, E is evapotranspiration, Q is

runoff, and P −E is precipitation minus evapotranspiration. Data are divided into two 30-year periods: 1961-1990 (light gray) and 1991-

2020 (dark gray). Left column: TerraClimate (P ), TerraClimate (E), and TerraClimate (Q). Middle column: mHM(E-OBS) (P ), mHM (E),

and mHM (Q). Right column: ERA5-Land (P ), ERA5-Land (E), and ERA5-Land (Q).
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3.3 Spatial patterns of water cycle changes

The results shown so far provide insight into the temporal changes water cycle components have undergone in the past 60

years, considering spatial weighted averaged values across Czechia. To expand our analysis from the temporal into the spatial250

domain and provide insight into the spatiotemporal features of the selected data sets, we mapped the difference between the

1991-2020 and the 1961-1990 medians for P , E, Q, and P −E (Figure 6). Note that maps for each product were generated

at their native resolutions, i.e., TerraClimate at 4 km, mHM at 0.125◦, and ERA5-Land at 0.1◦. At first glance, we observe

overall agreement in spatial patterns between data sets for evapotranspiration and runoff, with slight discrepancies around the

Sudetic (northeast), Šumava (southwest), and Ore (northwest) Mountains. In particular, ERA5-Land exhibits changes of higher255

magnitude in evapotranspiration (increase) and runoff (decrease) than TerraClimate and mHM.

Contrary to the above-described agreement, there is no consensus on spatial precipitation patterns among data sets. We

discern three different patterns: TerraClimate shows a homogeneous increase across the country with a particular contour of

higher increase that starts at the Šumava Mountains and diminishes toward the Ore Mountains and a slight decrease around

the Sudetes; ERA5-Land portrays a somewhat zonal pattern with increasing bands north of 50.5◦N and south of 49.5◦N of the260

country and a decreasing band in the middle; mHM pattern is in between those of TerraClimate and ERA5-Land, with the band

of precipitation decrease being smaller than that of ERA5-Land confined west of 15◦E. While some of these heterogeneities

are echoed in P −E spatial patterns, there is a general decrease across data sets over Czechia. Therefore, evapotranspiration

changes appear to dominate the spatial distribution of water availability.

Based on the results observed in Figure 5, we have previously identified that monthly patterns of increase or decrease265

in water fluxes are, to some extent, aligned with their seasonal variability. Thus this time around, we aggregated the data

seasonally rather than looking at the monthly spatial distribution of changes in the median between the two 30-year periods.

While individual characteristics for each data set are further emphasized by looking into seasonal spatial patterns, we identify

some common traits. A dominant pattern of precipitation decrease is localized to the Westernmost part of Czechia during

winter and expands to the rest of the country during spring. Evapotranspiration increases of the highest magnitude take place270

during spring and summer. As a result of this opposing direction, during spring, we see the most substantial decrease in runoff

and P −E therein. Furthermore, it is safe to state that if evapotranspiration generally increases despite decreasing patches of

precipitation (present to a greater or lesser extent across all seasons), the water cycle in Czechia is dominated by changes in

energy rather than water availability.

TerraClimate, with a resolution of 4 km, offers far more detail on spatial patterns than other data sets (Figure 7). It has a275

semester split for precipitation, with a decreasing pattern dominating winter and spring and an increasing pattern dominat-

ing summer and autumn. Evapotranspiration decreases during spring and summer but does not cover nearly as much area of

Czechia as precipitation when decreasing. Runoff changes circumscribe winter (increase) and spring (decrease) and are rel-

atively mute during summer and autumn. Regarding water availability, the patterns of P −E reflect those of precipitation.

However, the increases in summer and autumn are not as notable. Autumn is a season of spatial homogeneity in TerraClimate280

because precipitation, evapotranspiration, runoff, and P −E all depict countrywide increases, albeit of smaller magnitude than
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Figure 6. Spatial pattern of changes in median water fluxes over Czechia between two 30-year periods: 1961-1990 and 1991-2020. I.e.,

the value of each grid cell is equal to the median value of 1991-2020 minus the median value of 1961-1990. P is precipitation, E is

evapotranspiration, Q is runoff, and P −E is precipitation minus evapotranspiration. Left column: TerraClimate (P ), TerraClimate (E), and

TerraClimate (Q). Middle column: mHM(E-OBS) (P ), mHM (E), and mHM (Q). Right column: ERA5-Land (P ), ERA5-Land (E), and

ERA5-Land (Q).
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in other seasons. On the other hand, a distinctive contrast takes place in winter, in which we have a decrease in runoff in spite

of an increase in water availability.
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Figure 7. TerraClimate spatial pattern of changes in seasonal median water fluxes over Czechia between two 30-year periods: 1961-1990

and 1991-2020. I.e., the value of each grid cell is equal to the seasonal median value of 1991-2020 minus the seasonal median value of

1961-1990. P is precipitation, E is evapotranspiration, Q is runoff, and P −E is precipitation minus evapotranspiration. The seasons are

defined as follows: winter as December, January, and February; spring as March, April, and May; summer as June, July, and August; autumn

as September, October, and November.

Seasonal spatial patterns of mHM have the least substantial changes, with magnitudes mainly in the -25 mm to 25 mm

range compared to the -40 mm to 40 mm range of TerraClimate and ERA5-Land (Figure 8). Precipitation patterns mimic those285

of TerraClimate except for autumn, where mHM(E-OBS) holds more heterogeneity. Contemporaneously, we observe slightly

decreased evapotranspiration. For the rest of the seasons, evapotranspiration presents a widespread pattern of positive changes,

with the highest magnitudes in summer. There is a dominant decreasing pattern for runoff across all seasons. In winter, there are

pinpoint increases around the Czech borders near the Sudetic, Šumava, and Ore Mountains. P −E has the highest magnitude
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for decreasing change in spring. There is a mixed pattern of increase and decrease for P −E in winter and summer, yet the290

extent of decreasing changes is more prominent. Once again, analogous to TerraClimate, we find a season of contrasting runoff

(decreasing) and P −E (increasing) changes, but for mHM, it takes place in autumn.
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Figure 8. mHM spatial pattern of changes in seasonal median water fluxes over Czechia between two 30-year periods: 1961-1990 and 1991-

2020. I.e., the value of each grid cell is equal to the seasonal median value of 1991-2020 minus the seasonal median value of 1961-1990. P is

precipitation, E is evapotranspiration, Q is runoff, and P −E is precipitation minus evapotranspiration. The seasons are defined as follows:

winter as December, January, and February; spring as March, April, and May; summer as June, July, and August; autumn as September,

October, and November.

ERA5-Land spatial pattern of changes in seasonal median water fluxes closely resembles those of mHM (Figure 9). The

previously observed zonal pattern for precipitation change between the two 30-year medians seems to be driven by summer

changes. Evapotranspiration changes, unlike TerraClimate or mHM, are increasing across all seasons. With specifically large295

evapotranspiration increases in summer followed by spring. In opposition, runoff has decreased regardless of the season. The

sporadic patches of increased runoff observed in mHM near the Czech borders are nonexistent in ERA5-Land. Similarly, the

18

https://doi.org/10.5194/hess-2023-129
Preprint. Discussion started: 20 June 2023
c© Author(s) 2023. CC BY 4.0 License.



mixed patterns for P −E for mHM present in winter and summer are missing in ERA5-Land, which only reports decreasing

changes. Lastly, we evince contrast in the direction of change between runoff (predominantly decreasing) and P−E (predomi-

nantly increasing) in autumn, parallel to that of mHM. While this contrast is present in all data sets, the season differs for mHM300

and ERA5-Land (autumn) vs. TerraClimate (winter). Moreover, it is also inversed, i.e., TerraClimate has increasing runoff and

decreasing P −E, but mHM and ERA5-Land have decreasing runoff and increasing P −E.
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Figure 9. ERA5-Land spatial pattern of changes in seasonal median water fluxes over Czechia between two 30-year periods: 1961-1990

and 1991-2020. I.e., the value of each grid cell is equal to the seasonal median value of 1991-2020 minus the seasonal median value of

1961-1990. P is precipitation, E is evapotranspiration, Q is runoff, and P −E is precipitation minus evapotranspiration. The seasons are

defined as follows: winter as December, January, and February; spring as March, April, and May; summer as June, July, and August; autumn

as September, October, and November.
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4 Discussion

Overall long-term changes in the annual water cycle in Czechia are primarily evident in evapotranspiration. Interestingly, the

general agreement among different data sets at low-frequency time scales dissolves as we deepen into seasonal and monthly305

scales. Higher frequency temporal analysis revealed that while its seasonality modulates changes in precipitation, these changes

are overwhelmed by a consistent evapotranspiration increase. This compound behavior results in depleted water availability, as

reflected by decreasing runoff and P −E. Furthermore, different data combinations estimate different spatiotemporal patterns

of water cycle changes. The observed redistribution of water availability can seriously impact water resources in the region,

including the quality and quantity of drinking water, the accessibility of water for irrigation and energy generation, and the310

health of aquatic ecosystems. Our results herein provide an updated overview of the water cycle in Czechia and map changes

in the past 60 years, are essential to assess and ensure the sustainable use and management of water resources in Czechia.

Additionally, we have defined and demonstrated the ability of a purely empirical ranking method to benchmark hydroclimatic

data fusion and determine the best combination to represent water cycle budget closure that can be applied to any other regional

study.315

We determined that the best data sets for long-term assessment of water cycle individual components in Czechia based on the

selected references are: mHM(E-OBS), ERA5-Land, and TerraClimate for precipitation; ERA5-Land, mHM, and TerraClimate

for evapotranspiration; mHM, TerraClimate, and ERA5-Land for runoff. Similar standings for precipitation data were reported

by Fallah et al. (2020) and Bandhauer et al. (2022). Fallah et al. (2020) used runoff simulation vs. streamflow observations

using different data sets to benchmark precipitation data and found that E-OBS yields a robust agreement, while ERA5, Global320

Precipitation Climatology Centre (GPCC V.2018; Schneider et al., 2011), and Multi-Source Weighted-Ensemble Precipitation

(MSWEP V2; Beck et al., 2019) show good performances. Bandhauer et al. (2022) report that while E-OBS and ERA5 agree

qualitatively, ERA5 considerably overestimates mean precipitation over Europe due to too many wet days. These prevalent wet

bias in ERA5 has been reported along diverse assessments (e.g., Bešt´áková et al., 2022; Lavers et al., 2022). NCEP/NCAR R1

had the worst precipitation performance. It was previously reported that, at least regarding extreme precipitation, NCEP/NCAR325

R1 performed far better than ERA5’s predecessors, i.e., ERA40 (Uppala et al., 2005) and ERA-Interim (Dee et al., 2011), (Sun

et al., 2018). This disagreement could be attributed to the improvements implemented in ERA5 over its predecessors in model

parameterizations, spatial resolution, and input data assimilation. Additionally, the poor performance of NCEP/NCAR R1

might be rooted in its coarse spatial resolution (two grid cells cover Czechia).

Regarding evapotranspiration estimates, ERA5-Land has been reported as an adequate data source to overcome the unavail-330

ability of observed agrometeorological data in Europe (Vanella et al., 2022), and its robustness supports its use for drought

monitoring (Vicente-Serrano et al., 2022). mHM has undergone extensive evaluation over Europe at multiple spatial scales and

has repeatedly shown its ability to capture the observed dynamics of actual evapotranspiration (Hanel et al., 2018; Rakovec

et al., 2016a) and its application to determine dominant drought types and their evolution (Markonis et al., 2021). While, to our

knowledge, there have not been studies focusing on the quality or applications of TerraClimate evapotranspiration to date, it335

has been calibrated and validated using FLUXNET data (Abatzoglou et al., 2018), a conglomerate of networks gathering and
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standardizing quality control protocols for station-based evapotranspiration measurements (Pastorello et al., 2020). Most of the

abovementioned referenced studies also testify to the quality of runoff data from mHM, TerraClimate, and ERA5-Land because

the studies use runoff and streamflow data derived, among other variables, from their evapotranspiration estimates and show

that they can capture the streamflow dynamics adequately across a wide range of climate and physiographical characteristics.340

Despite our evaluation of individual water cycle components being cohesive with previous literature and even though mHM’s

performance was among the best for all water cycle components, the best data set combination ranking is actually Terraclimate

exclusive (i.e., all flux estimates from the same data set). Further, to our surprise, we found that throughout our analysis,

a hydrological model and reanalysis (mHM and ERA5-Land) presented more compatible spatiotemporal patterns than the

two hydrological models (mHM and TerraClimate). In terms of water cycle fluxes’ magnitude, we report significant ERA5-345

Land overestimation of precipitation and evapotranspiration, which are in line with previously reported overestimations of

summer precipitation over Central Europe (Hassler and Lauer, 2021; Rivoire et al., 2022). Regarding hydrological models,

their evapotranspiration response is strongly linked to how they represent soil moisture and radiative energy at the surface (Boé

and Terray, 2008; Zhao et al., 2013), leading to the visible discrepancies among mHM and TerraClimate.

There is agreement among the best-ranked data set combinations that most of the significant changes in Czech water fluxes350

are localized in spring, particularly in April and May. Notwithstanding, we observe that it is the summer season whose changes

determine the spatiotemporal patterns of change between the 1991-2020 and 1961-1990 medians. Declining precipitation and

increasing evapotranspiration in spring support reported drying trends over Czechia (Brázdil et al., 2015). In addition to these

general patterns, we identified localized increases in winter runoff coupled with decreases and shifts in spring runoff around

the Sudetic, Šumava, and Ore Mountains. These changes in mountainous runoff have been previously identified and attributed355

to decreasing snow cover and earlier snowmelt season (Nedelcev and Jenicek, 2021), which in some Czech catchments also

derive in summer low flows (Jenicek and Ledvinka, 2020). Similar seasonal developments of the snow effect on runoff have

been reported over multiple mountainous catchments across the world (Berghuijs et al., 2014; Dierauer et al., 2018; Muelchi

et al., 2021). Hänsel et al. (2019) remark that seasonal trends are sensitive to shifts in the season definition by one month, which

aligns with our monthly analysis because we identified significant changes in months like May and November (peripheral360

months of spring and autumn as defined herein). Additionally, it could be the reason behind summer, the contiguous season,

dominating the long-term precipitation pattern.

The drying regime we report in Czechia, due to the gradual increase in atmospheric evaporative demand over the last 60

years (1961-2020) extends in time and space over central and eastern Europe (Bešt´áková et al., 2022). Jaagus et al. (2022)

reported long-term drying trends for the 1949-2018 period in Slovakia, Hungary, Romania, Moldova, southern Poland, and365

particularly significant in Czechia. Trnka et al. (2016) described a strong tendency towards increased dryness in most Central

Europe. Brázdil et al. (2009) performed one of the longest-record analysis in the region (1881-2006) and exposed an increasing

tendency towards more prolonged and more intensive dry episodes. Still, it remains unclear how this long-term shift is linked

to the post-2000 seasonal (Potopová et al., 2015), annual (Hanel et al., 2018), and multi-year droughts (Moravec et al., 2021)

that have occurred in Central Europe and Czechia in specific. It has been demonstrated, though, that these droughts manifest370

more as soil moisture deficits than meteorological and hydrological droughts, as they are related to high evaporative demand
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during the warm season period (Markonis et al., 2021). Our results agreement shows that the long-term aridification could

be the outcome of the same physical mechanism, i.e., evaporation increase, to the one that dominates the short-term extreme

events.

Our study comes with certain limitations that pave the way for future research. A certain limitation is that our analyses do375

not attribute the observed changes to any potential physical or anthropogenic drivers. It is likely that the evapotranspiration

increase is linked to long-term changes in atmospheric circulation patterns that have caused a decline in cloudiness (Lhotka

et al., 2020). As it has been shown that global warming is going to disrupt the terrestrial water cycle mainly due to changes

in precipitation (Roderick et al., 2014), it is more plausible to attribute the observed intensification to the fluctuations of

atmospheric circulation. Yet, this remains to be confirmed by future studies that will determine the factors that contribute most380

to the hydroclimatic shifts, although drought projections over Czechia (Dubrovsky et al., 2009), and central Europe Hari et al.

(2020) indicate an increased drought risk in the future prevalent under different climate change scenarios. Additionally, our

work does not investigate the role of water storage (snow and groundwater), as well as land cover or vegetation changes. Lastly,

while country-level assessments are essential to improve water resources management and natural hazard policies, the water

cycle budget is closed over hydrological units, not administrative boundaries.385

5 Conclusions

Herein, we have proposed and demonstrated the applicability of a novel benchmarking method based on water cycle budget

closure for hydroclimatic data fusion. The method does not enforce closure nor merge multiple data sets into a new one,

but instead identifies the best combination of data sets in terms of water cycle budget residual distribution and correlation

to referential data. Furthermore, the ranking method presented could easily be applied to any other region and use different390

referential data sets for evaluation. The ranking method may still be employed using gridded data like GPCC or CRU TS as an

evaluation reference in data-scarce areas or when ground-station data is not publicly available. Most importantly, this metric is

not constrained by data availability, as any of the variables in the equation evaluation terms can be omitted. This modularity

makes it a flexible alternative to traditional approaches.

Using the best water budget data, we demonstrate that Czechia is undergoing water cycle acceleration, evinced by increased395

atmospheric water demand. Remarkably, the increase in precipitation is not as pronounced as that one in evapotranspiration.

While changes in the 30-year median of spatial weight average annual values show a minimum change in water availability,

the spatial patterns reveal a prevalent decreasing pattern of runoff across the country. Besides, we identified significant spatial

heterogeneity when assessing precipitation at a seasonal scale. Intriguingly, summer patterns are reflected in the spatial differ-

ence between the 1991-2020 and the 1961-1990 medians despite most of the significant changes in water cycle components400

being localized in spring. What is more, the precipitation rain/snow partition effect of less snow and earlier snowmelt around

the mountains is reflected in a seasonal shift of runoff (increase in winter and subsequent decrease in spring). This might reflect

how sub-seasonal shifts could affect the long-term hydrologic changes.
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Based on our results and previous literature, it is safe to state that the depletion of water availability (runoff and P −E)

over Czechia could prompt a surge in drought frequency. Considering that shifts in evapotranspiration overwhelm those of405

precipitation, the water cycle in Czechia is mainly driven by changes in energy rather than water availability. Further research

is needed to better understand the complex drivers of this drying trend and to develop targeted interventions to address possible

factors external to natural variability, like land-use changes and other anthropogenic factors. Although it remains unknown if

this drying trend will persist, it should be considered in the planning of effective drought management strategies and water

conservation measures to mitigate its adverse impacts for agriculture, energy production, and natural ecosystems in Czechia.410

Code and data availability. The data compiled herein and the R code for the figures are publicly available at https://github.com/MiRoVaGo/

ugc_cwc.
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